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Summary. The statistical mechanics of a ring polymer confined to a plane and 
entangled with many randomly placed thin rods perpendicular to the plane are 
considered. The entanglements are characterized by the Gauss linking number. If 
the statistics of the random distribution of the rods is given by only the second 
cumulant then it is shown that the resulting entanglement problem can be solved 
formally exactly. For this special case the exact solution becomes possible 
because the problem can be reduced to one involving the winding of the polymer 
around one infinitely thin rod. The exact solution can be obtained for both the 
annealed and the quenched random distribution of obstacles. The entanglement 
of the ring polymer around the obstacles leads to a repulsive topological 
potential which is an effective interaction between the polymer and the rods. The 
origin of this potential is solely due to the constraint that the winding number be 
conserved. It is shown that for R2/Ll ~ l (R is the location of the polymer 
segment, L is the total length of the polymer, and l is the length of the monomer) 
the topological potential for the annealed random case goes as N In ln(Ll/R 2) 
where N is the number of obstacles whereas for the quenched random case the 
potential is given by C in Ll/R 2, where C is a numerical constant that depends 
on N. 
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1. Introduction 

In 1967 Prager in collaboration with Frisch published a remarkable paper [ 1] on 
the statistical mechanics of a simple entanglement in polymer systems. It had been 
previously established that entanglements taust be extremely important in the 
description of gels, rubber, and other crosslinked systems [2]. Nowadays it is 
suspected that effects of entanglements are relevant in the theory of the dynamics 
of polymer solutions even in the infinite dilution limit [3]. However no microscopic 
treatment of entanglement in polymeric systems has been possible because a 
complete analysis of entanglement requires the incorporation of constraints 
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imposed by the topological relationship between a pair of polymer molecules 
into the statistical mechanics calculation [4, 5]. Strictly speaking the classifica- 
tion of these constraints taust involve the theory of knots [6], which is a subject 
that is still being developed. Prager and Frisch recognized the difficulties associ- 
ated with treating the statistical mechanics of entanglements. In order to 
provide a simple illustration of the significance of topological entanglements 
they used a simple analytical invariant, namely the Gauss invariant, to charac- 
terize the different topological classes that results when the Gaussian chain 
loops around the thin rod. In this case the winding number is conserved, and 
the configurations having different winding numbers belong to distinct topolog- 
ical classes. The statistical mechanics of the resulting problem, which involves 
the incorporation of the constraint that the winding number be a constant, was 
solved exactly by Prager and Frisch. These results were independently obtained 
by Edwards [7] using path integral methods. These two papers were the first, 
and perhaps the most instructive ones that showed how the results for a simple 
system (a Gaussian chain) can be profoundly changed when the constraint is 
taken into account. The most dramatic consequence of incorporating the con- 
straint into the theory is that the system can support an application of stress 
indefinitely, i.e., it behaves like an elastic system. The nature of the elastic 
response for this simple system turns out to be extremely complex as was first 
pointed out by Prager and Frisch. It is for this reason the treatment of 
topological entanglements is believed to be relevant in dense polymerie systems 
which invariably exhibit viscoelastic properties. The Prager-Frisch-Edwards 
(PFE) model has been extended in a variety of interesting ways over the last 
twenty-four years [5, 8-12]. 

In this paper the PFE model is generalized to .include the possibility of 
entanglement of a phantom ring polymer confined to a plane (two dimensions) 
in the presence of several randomly placed rods perpendicular to the plane. This 
model was considered earlier by Tanaka [13] who provided an approximate 
solution in the case when the randomness is annealed. Our solution to the 
problem, which is very different from the one provided by Tanaka, follows more 
closely the path integral approach introduced by Edwards [7, 14]. In particular 
we show that if the statistics of the randomly placed obstacles is Gaussian 
requiring only two moments to specify the statistics then the problem can be 
mapped onto the entanglement of the ring polymer with a single rod. The latter 
problem is precisely that solved by PFE, and the results obtained by these 
authors can be profitably used. Although this mapping allows the problem to be 
solved exactly the approximate variational estimate of the annealed free energy 
obtained by Tanaka is quite useful. 

The basic physics of the problem is easy to understand. The topological 
constraint, namely that the winding number be a constant, leads to a consider- 
able reduction in entropy. The reduction in entropy can be expressed as an 
effective repulsive potential of mean force, and is referred to as the topological 
potential. The reason this model is useful is because in dense polymer systems the 
motion of a given polymer is impeded by constraints due to topological 
entanglement with other polymer molecules. The simplest way of describing such 
constraints, encountered for example in vulcanized materials [ 15], is by using the 
Gauss invariant. In these systems if one is concerned with times less than the 
typical creep times then the topological constraints due to the rods may be 
analogous to the restrictions a typical polymer molecule encounters due to the 
other polymer molecules. 
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2. Annealed randomness 

Consider a long potymer molecule confined to lie in a plane. In this paper the 
excluded volume interactions between the monomer segments will be ignored 
and, hence the polymer is a phantom chain. The effects of excluded volume on 
the statistics of polymers with topological constraints will be treated separately 
[16]. The configuration of the polymer molecule can be specified as a random 
walk of step length l, which roughly corresponds to the Kuhn length. In the 
continuum limit the probability that a polymer molecule at time 0 (the role of 
time being played by the distance along the arc length of the polymer) is at R~ 
and at a later time L it is at R 2 is given by [4]: 

I r(L)=R2 ( I C L { d r \ 2 \  

Now suppose there is a nonselfentangled curve D in this space. For the 
calculations reported in this paper this curve D is a line that results from the thin 
rod placed perpendicular to the two dimensional plane. The question of interest 
is the way in which topologically distinct sets are to be classified. In addition it 
is of interest to calculate the probability of realization of these classes for a given 
set of chain parameters. The simplest way to classify topological entanglement is 
through the specification of the Gauss linking number, i.e., [1, 4, 7]: 

fc  1 fD ( r - s )  xds  I = dr" ~ (r -- s) 3 (2) 

where C is the curve specifying the polymer configuration. For our problem I 
simply turns out to be the winding number: 

: i~ (<,,~. m ~o \as /  A(r(s)) as (3) 

where the vector field with zero divergence, A(r(s)), is given by: 

( ,  x) A(r(s) )  = x 2 + y 2 ,  x 2-7 y2 (4) 

with r=(x ,y) ,  and m = 0 ,  i l , _ + 2 ,  etc. The winding number (which is the 
topological constraint in the problem) can be written as: 

m = \ds]  (5) 

with 

d0 (xp - y~) 
ds x 2 + y2 (6) 

where the dot denotes a time derivative. Notice that the winding number can 
have positive and negative integer values as well as zero. The above problem has 
been solved by Prager and Frisch [1] and independently by Edwards [7]. The 
exact solution to the problem can be used to calculate various properties of the 
system [8]. 



410 D. Thirumalai 

We now generalize the problem to the case where there are N rods that are 
randomly placed. The rods are assumed to be needle like, i.e., the aspect ratio of 
the rods is essentially infinite. A physical situation where this may be relevant is 
in the description of a polymer molecule in a gel or rubber. The topological 
constraint is assumed to arise from the cross links in the medium. Needless to 
say that the problem we are considering is at best a caricature of the situation 
that occurs in the more interesting physical systems. The various topologically 
distinct classes are characterized by a set of winding numbers, ml, 
(i = 1, 2 , . . . ,  N) where: 

;o ;o ~ ~ '  = tZ) 
[(x(s)- »~)~- (y(~)-ey)~las 

(X -- R/x) 2 -Jff (y - Ry) 2 
(7) 

with P = (P~, P~) being the position of t he / t h  rod. The propagator of interest 
can be written as: 

f r ( L ) = R 2  ( ~ ;0  r ) I l0 1 G(R» L; R1, O) B[r(s)] exp - t:2(s) I~I Oi(s) ds - mi 
dr(O) = R ~ i =  1 

( 8 )  

where N is the number of obstacles. Notice the constraint is imposed by the delta 
function in the path integral. The delta function in Eq. (9) is to be interpreted as 
the Kronecker delta function whose integral representation is given by: 

f _ d x  ixm 6(m)= ~ ~ e  . (9) 

The integral representation of the delta function given in Eq. (9) can be used to 
write Eq. (8) as: 

N L 
d2i i& m i -- 7 t:2(s) Æ + G(R2, L;RI,0)= ~ e  D[r(s)]e i=1 "0 (10) 

where the vector field, A(r(s) - P~), is about the location of the / th  rod. We first 
consider the case of annealed randomness in which the randomly placed obsta- 
des are in equilibrium with the polymer molecule. By annealed we mean that the 
rods are allowed to equilibrate among themselves on time scales in which the 
internal degrees of freedom of the polymer molecule relax. In contrast if the time 
scales for equilibration of the obstacles are much longer than the polymer 
relaxation times then one is faced with the case of quenched randomness. The 
latter problem is treated in the following section. In both cases it is assumed that 
the configurations of the polymer are at equilibrium. For the case of annealed 
randomness the physical quantities of interest should be calculated by averaging 
over the distribution of the randomly placed rods. The distribution function 
describing the location of the rods is assumed to be proportional to 1/S where S 
is the area of the plane, This assumption about the distribution function implies 
that there is no correlation between the rods. The averaging over the distribution 
of the rods can be represented in terms of the usual cumulant expansion [ 17]: 

(exP i~= i)~~ f~  dsA[r(s) - Ri] . i(s) l ~_ exp(-½C2A2) (11) 
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where 

and 

N 
A z = ~ 22 (12) 

i=1 

f foUl ~ c2 = de «s a s ' p ( s )  • A(~(s) - » ) ] p ( s ' )  • A(r(s') - P)].  (13)  
0 

Notice the expansion in Eq. (11) has been truncated at the second cumulant, the 
first one being zero. Thus the propagator averaged over the random distribution 
of rods is: 

<a(R2,L,e,,o)>=fO~e,m,~,e~~,(e»L;R,,o) (14) 

where ( . . . )  denotes averaging over the distribution of obstacles and: 

fr~~~-" [(~;o ~ ; fo ~ Q[a = D[r(s)] exp - ~2(s) ds - A 2 dP  ds 
JKO) = R l 

j~ )] x ds ' ( i ( s )  • A(r(s )  - P ) ) ( i ( s ' ) -  A ( r ( s ' )  - P))  . (15) 
0 

If the transformation r(s) -~ r(s) - P is made then the following identity: 
B_ x2 a2 

oo dx  - -  T + i a x  

. 2 /~e  = e  2 (16) 
co 

can be used to write Eq. (15) as: 

Q[~.] = f DZ fri~~~°~2 D[r(s)] exp [ - ~  f~ i'z(s) ds + izfl f ;  dsi'(s) . A(r(s)) ], (17) 

where 

z 2 

e - ~  

D Z  = - ~ ~  dz. (19)  

and 

In obtaining Eq. (17) we have made use of the fact that Q[a should be independent 
of P due to translational invariance. The path integral in Eq. (17) is precisely that 
associated with the entanglement around an isolated rod and can be calculated 
either by using the equivalent Schrödinger equation [7] or by using a discretized 
path representation of Q[a [18]. This is exactly soluble and one obtains: 

Q[a = D Z n  y exp(in(O" - o '))  ~ l  
d n ~  - - o 0  

x exp L \ Lz M ~"-~~l (20) 
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where Iy(X) is the modified Bessel function. In obtaining Eq. (20) the use of 
translational invariance of Q has been made. Using Eq. (20) the free energy of 
the entangled polymer system may be obtained using the relation: 

~A/kù T = - l n  f <G(R, L; R, 0 »  dR (21) 

where kB is the Boltzmann constant and T is the temperature. In Eq. (21) R 
is the location of the end points which for the case of ring polymer specifies 
the position of an arbitrary monomer. This completes the formal solution to 
the problem of calculation of the free energy of an entangled ring polymer 
in the annealed random case. The propagator and the free energy, FA, can then 
be used to calculate the correlation functions, elastic constants, and osmotic 
pressure. 

Although the formal solution to the problem is complete the analytic 
evaluation of the integrals that occur in the expression for the free energy proves 
to be formidable. Thus we present an approximate evaluation of certain quanti- 
ties of interest namely the topological potential and the resulting topological 
force or equivalently the elastic force. 

The topological force can be calculated from the propagator for the ring 
polymer which is given by: 

fl~ii d,~iei~~~m~ DZ °° 1 (G(R, L; R, 0)) = ~ ~ 

× exp \ LI ] - azl \ - - ~ - j  (22) 

For small values of R such that x = 2R2/LI ~ 1 the modified Bessel function may 
be written as [ 19]: 

/I,,-~zl (x) -- F - ' ( I n  - /~z I + I) (23) 

where y = (n-/~z). Since x is smaU the maximum contribution to Eq. (23) 
comes from y ~ 0, and in this limit F - l ( y  + 1) may be replaced by unity [20]. 
By the same reasoning it is also easy to show that the maximum contribution to 
the summation over the index n comes from n = 0. With these approximations 
the probability of finding the random distribution of the rods, PA(R)= 
(G(R, L; R, 0)), becomes: 

exp \ LI } + LI 2 
2 In ~-~ 

where m 2 is the mean square degree of entanglement per rod: 

l N 
r n 2 = ~  ~ m/2. (25) 

! 
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From Eq. (24) the probability that the ring polymer has zero value for the mean 
square degree of entanglement per rod, i.e., m 2 = zero is given by: 

2R 2 

e L l  

P ° ( R ) , ù [  In \R2/].j(LI'I N (26) 

which coincides with the result for entanglement with one obstacle [21] when N 
is unity [22]. The result given in Eq. (26) is not very surprising. Since there is no 
correlation between the rods we expect that P°(R) should roughly be given by 
pN(R) where Po(R) is the probability of no entanglement when just one rod is 
present. A topological free energy for the annealed random case can be defined 
a s  

rA(R) 
--  - -  In PA (R)  ( 2 7 )  

kBT 

and using Eq. (24) we get: 

rA(R) 
kBT 

(Lg) Nm2 + N In In ~5 (28) 

2[ In (R2)la \ZT)j 
where kB is the Boltzmann constant, and T is the temperature. The topological 
force (or disjoining pressure) is given by -~FA(R)/~R and using Eq. (28) we 
obtain: 

fA (R) 2N 2Nm 2 for ~ 1. (29) 

k , T  R ln  ~-7 R l n \ - ~ ß [  In ~-5 

This purely repulsive force can be thought of as a potential of mean force 
experienced by a segment located at R, and is purely topological in nature. It 
arises because the distinct topological classes have a certain constraint. In our 
case the constraint is expressed by requiring that the winding number be fixed. 
When the averaging over the random distribution of obstacles is done the 
topological classes are distinguished by the different values of m 2. Notice that 
this force diverges strongly as R tends to zero. From Eq. (24) it is also clear that 
the elastic response (which can be studied by imposing an external field and 
calculating the response of the system to this field) can be extremely complicated 
as was first shown by Prager and Frisch for the case of winding of a polymer 
molecule around one obstacle. 

3. Q u e n c h e d  r a n d o m n e s s  

If the obstacles, namely the rods that are placed perpendicular to the plane, are 
treated as quenched random impurities then one has to average the free energy 
over the random distribution of obstacles. This is to be contrasted with the case 
of annealed randomness treated earlier in which the propagator G(R, L; R, 0) (or 
equivalently the partition function) was averaged over the random distribution 
of rods. The quenched random average can be calculated using the replica trick 



414 D.  T h i r u m a l a i  

which was introduced by Edwards in the treatment of rubber elasticity [23]. In 
general the treatment of problems involving quenched randomness is extremely 
difficult. However we will show that for the problem considered earlier the 
formal calculation of the quenched random free energy is (at least formally) 
surprisingly simple. 

The reason for considering the case in which the obstacles are treated as 
quenched random impurities in modelling entanglements is the following. In 
gels or in systems where the molecules are permanently crosslinked with one 
another (like elastic networks) the precise topological relationship between 
polymer segments belonging to different chains act as constraints [15]. In this 
paper these constraints are modelled by insisting that the winding numbers be 
constant. Thus for a particular realization of the sample one has to specify the 
location of the rods, and the associated probability of realizing such a configu- 
ration. The control parameter in our case is the position of rods and for a 
given realization of the obstacles the chain topology is specified by a set of N 
winding numbers. If the time scale for changes in the position of the rods (this 
may correspond to creep times of the network) is much longer than the 
relaxation time for the internal degrees of freedom of the ring polymer then one 
is lead to the computation of free energy for a given realization of the obsta- 
des. The quenched free energy is obtained by averaging the free energy for a 
given set of {Ri} over the random distribution of obstacles. The separation in 
time scale given above is often met in gels, rubbers [15], spin glasses [24], and 
other systems. In out case the quantity of interest is <ln G(R, L; R, 0)> from 
which the quenched topological potential, FQ(R), for the ring polymer oase can 
be computed using: 

FQ(R) _ -< ln  G(R, L; R, 0)>. (30) 
kB T 

By using the replica trick [23, 24] the average of logarithm of the propagator 
can be written as: 

<InG(R2'L;RI'O)>=Iim[ n " (31) 

By following the procedure outlined in the previous section <G"(R, L; R, 0)) 
can be written as: 

~d{Ä} ,~;jmj ù 
<G"(R2, L; R1, 0)> = j--~--n e <Q{x}> (32) 

where d{),} = [ I  dA, and: 

f ;~ F~f ~ fo ~ ] <Q~~}> = DZ 1D[r«(s)] exp~  - r2~(s)ds + iflz re(s) .A(r~(s))ds 
« L  " J o  

= f D Z K ' .  (33) 

The path integral in K is precisely the quantity that occurs when the polymer is 
entangled with one rod, and the result is explicitly given by Eq. (20). The 
quantity of interest in Eq. (30) can be obtained using Eqs. (31) and (32), and for 
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potential is given by: 

FQ(R) _ 
kBT 

where 

the case of ring polymers the explicit result for the quenched topological 

fd{2} (i . 2jmj (34) 

"Ë 1 
~'~ = n= --oo ~ I  « LlI[n--flz[~ t l  } "  (35) 

This once again formally solves the problem of the calculation of the quenched 
free energy for our model of entanglement. 

The explicit computation of Fo(R ) for a given set of system parameters (L, 
N, and mean entanglement index per rod) is not possible and thus Eq. (34) has 
to be evaluated numerically. However some insight may be obtained by comput- 
ing FQ(R) for smaU values of RZ/LI. By using the approximations given in Eqs. 
(23) the topological potential Fo(R ) corresponding to the probability that the 
phantom ring polymer has zero mean square degree of entanglement per rod is 
given by: 

kBT C In ~ for ~-~ ~ 1 (36) 

where C is a numerical constant that depends on N. It is interesting to compare 
this result with the topological potential FA(R) for the annealed random case 
which can be obtained by setting m2= 0 in Eq. (28). The potential FQ(R) is 
considerably more repulsive than F~(R). This result is general, i.e., the free 
energy for the quenched random case is always higher than the corresponding 
case of annealed randomness. This follows from the entropy reduction that 
results because the obstacles are treated as quenched random impurities. One can 
in principle use Eq. (34) in the expression for the free energy of polymer 
networks to calculate corrections (Mooney-Rivlin terms) to the classical theory 
of high elasticity of polymer networks. This may be useful especially in light of 
the work of Nechaev and Khokhlov [25] who suggested that the entanglement 
restrictions of a large number of obstacles is necessary to obtain significant 
corrections to the classical theory of elasticity. 

4. Conclusions 

In this paper we have generalized the PFE model to assess the effect of both 
annealed and quenched randomness on the statistical mechanics of simple 
entanglement. It can be argued that the presence of many randomly placed rods 
with which the chain can become entangled is a better caricature of the physics 
in physically interesting systems. We have shown that as long as the statistics of 
the randomly placed uncorrelated rods is adequately described by a Gaussian 
process both the annealed random problem as weil as the quenched random 
problem can be formally exactly solved. Out major result is that for small values 
of the argument R2/LI one obtains a repulsive topological potential arising 
merely from the constraint that the winding number be conserved. The topolog- 
ical potential for the situation that the polymer has zero mean square entangle- 
ment per rod is found to be considerably more repulsive for the quenched 
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r andom case than for the annealed r andom problem. Explicitly we have ob- 
tained: 

Fo(R) l n ( ~ )  (quenched) 

- - ~  (Ll)  (37) 
k B T In In ~-5 (annealed) 

where C is a N-dependent  constant.  The above equat ion for the repulsive elastic 
force on the ring polymer  confined to a plane due to entanglement  with the 
obstacles is our  principle result. 

In a certain sense the results o f  the present excercise are somewhat  dissap- 
pointing. It  has been transparent  already f rom the studies o f  Prager, Frisch, and 
Edwards  that  F(R) for entanglements with one obstacle has basically (apar t  f r o m  
the factor  o f  N) the structure that  we have obtained for the annealed r andom 
problem. The second impor tant  point  Prager and Frisch made was that  the 
simple Gauss invariant constraint  can make the phan tom ring polymer  behave 
like a system having a very complicated elastic response. Both these lessons are 
reaffirmed in our  present analysis. I t  is also unlikely that  the more  realistic 
modelling o f  entanglement at tempted here will be useful in providing a better 
unders tanding of  the experimental situation o f  elasticity in networks. Perhaps the 
most  interesting result o f  the present work  is the demonst ra t ion that  the case o f  
quenched randomness  can be formally exactly solved. It  also appears that  there 
is no evidence for replica symmetry breaking in this model  which has only short  
range interactions. Fur thermore  the explicit calculation o f  the topological  poten-  
tial shows that  in the limit o f  small values o f  (R2/LI) the potential  for the 
quenched r andom case is considerably more  repulsive than the potential  for the 
annealed case. 

Acknowledgements. It is a pleasure to dedicate this article to Prof. Stephen Prager for whom I had 
the privilege of being a teaching assistant in Statistical Mechanics for nearly three years. Stephen 
Prager most directly taught me the importance of imagination in solving scientific problems. My own 
interest in polymers began when I beard some unforgettable lectures by S. Prager on microemulsions 
and welding of polymers at interfaces, and I am grateful to hirn for introducing me to this field. I am 
grateful to Prof. A. R. Khokhlov for a discussion of applicability of the theory developed here to 
elasticity of dry polymer network. I would like to thank Prof. M. E. Fisher and an anonyrnous 
referee for several useful comments on an earlier version of this paper. This work was supported in 
part by a grant from the National Science Foundation. Additional support from the Camille and 
Henry Dreyfuss Foundation is greatly acknowledged. 

References and notes 

1. Prager S, Frisch HL (1967) J Chem Phys 46:1475 
2. Flory PJ (1953) in: Principles of polymer chemistry. Cornell Univ Press, Ithaca, NY 
3. Semenov AN (1988) J de Phys 49:175 
4. Wiegel FW (1986) in: Introduction to patb-integral methods in physics and polymer science. 

World Scientific, Singapore 
5. Brereton MG (1987) in: Studies in physical and theoretical chemistry. (MATH/CHEM/COMP) 

54:245 
6. Rolfsen D (1976) Knots and links. Publisher Perish, Inc., Berkeley 
7. Edwards SF (1967) Proc Phys Soc 91:513; see also Alexander-Katz R, Edwards SF (1972) J Phys 

A 5:674 



Topologically entangled polymers 417 

8. Saito N, Chen Y (1973) J Chem Phys 59:3701 
9. Brereton MG, Shah S (1980) J Phys A 13:2751; (1981) J Phys A 14:L51 

I0. Elderfield DJ (1982) J Phys A 15:1369 
11. Tanaka F (1982) Prog Theor Phys 68:164 
12. Iwata K (1982) J Chem Phys 76:6375 
13. Tanaka F (1984) J Phys Soc Japan 53:2205 
14. For a review of path integral methods in polymer problems, see Freed KF (1972) Adv Phys 22:1 
15. Edwards SF, Vilgis TA (1988) Pep Prog Phys 51:243 
16. Thirnmalai D (to be published). It is obvious that selfavoidance can have proposed inftuence on 

the allowed values of the winding number (defined in Eq. (3)). The only values m (see Eq. (5)) 
can have when excluded volume effects are taken into account a rem = + 1, - 1  or 0. 

17. It can be argued that the higher order cumulants do not make important contributions when the 
density of obstacles is high. See the appendix of Rel. [13] 

18. Inomata A, Singh VA (1978) J Math Phys 19:2318 
19. Abramavoitz M, Stegon JA (eds) (1964) Handbook of mathematical functions. Dover Publ, New 

York, p 375 
20. See Ref. [19], p 256 
21. Wiegel FW (1983) in: Domb C, Lebowitz JL (eds) Phase transitions, Vol 7, Adademic Press, 

London, p 85 
22. If m 2 = 0 then it follows that m« = 0 for all i's. The condition that all mi's are zero does not imply 

that the polymer is not entangled with any of the rods. It is possible that even with all the m[s 
equal to zero the chain can be highly entangled. This is best illustrated with the following simple 
example (provided by the referee). Suppose one has only two rods. Consider a polymer 
configuration obtained by the following construction. Let the chain wind around counterclock- 
wise around the rod labelled I twice followed by another counterclockwise rotation aronnd rod 
2. If this is followed by two clockwise rotations around rods 1 and 2 and then the ends of the 
chain are joined one would correctly conclude that both m~ and m 2 are equal to zero. However 
the polymer is highly entangled. Notice that in two dimensions as soon as one introduces 
selfavoidance the above configuration would be disallowed and in this oase the condition m~ = 0 
for all values of i does imply that the polymer is not entangled. 

23. Edwards SF (1971) in: Chornpoff AJ, Newman S (eds) Polymer networks. P1enum Press, New 
York, p 85 

24. Edwards SF, Anderson PW (1975) J Phys F 5:965 
25. Nechaev SK, Khokhlov AR (1988) Phys Lett A 126:431 


